Approach

  1. Grab datasets from here.
  2. Read on LA Metro Data to understand the dataset and what each column value represents.
  3. Use R Studio to parse dataset into various dataframes with selected column values to perform data wrangling.
  4. Write Python Script to calculate distance between latitude and longtiude coordinate points and the average distance calculates.
  5. Tableau Visualization Files
  6. Craft conclusion based on data analysis output. Look back and check if all variables were accounted for and seek room for improvement in the future use of the same methodology.

Dataset

A segment of our data source for viewing purposes.

Trip ID Duration Start Time End Time Starting Station ID Starting Station Latitude Starting Station Longitude Ending Station ID Ending Station Latitude Ending Station Longitude Bike ID Plan Duration Trip Route Category Passholder Type Starting Lat-Long Ending Lat-Long
1912818 180 2016-07-07T04:17:00 2016-07-07T04:20:00 3014 34.0566101 -118.23721 3014 34.0566101 -118.23721 6281 30 Round Trip Monthly Pass {'longitude': '-118.23721', 'latitude': '34.0566101', 'needs_recoding': False} {'longitude': '-118.23721', 'latitude': '34.0566101', 'needs_recoding': False}
1919661 1980 2016-07-07T06:00:00 2016-07-07T06:33:00 3014 34.0566101 -118.23721 3014 34.0566101 -118.23721 6281 30 Round Trip Monthly Pass {'longitude': '-118.23721', 'latitude': '34.0566101', 'needs_recoding': False} {'longitude': '-118.23721', 'latitude': '34.0566101', 'needs_recoding': False}
1933383 300 2016-07-07T10:32:00 2016-07-07T10:37:00 3016 34.0528984 -118.24156 3016 34.0528984 -118.24156 5861 365 Round Trip Flex Pass {'longitude': '-118.24156', 'latitude': '34.0528984', 'needs_recoding': False} {'longitude': '-118.24156', 'latitude': '34.0528984', 'needs_recoding': False}
1944197 10860 2016-07-07T10:37:00 2016-07-07T13:38:00 3016 34.0528984 -118.24156 3016 34.0528984 -118.24156 5861 365 Round Trip Flex Pass {'longitude': '-118.24156', 'latitude': '34.0528984', 'needs_recoding': False} {'longitude': '-118.24156', 'latitude': '34.0528984', 'needs_recoding': False}
1940317 420 2016-07-07T12:51:00 2016-07-07T12:58:00 3032 34.0498886 -118.25588 3032 34.0498886 -118.25588 6674 0 Round Trip Walk-up {'longitude': '-118.25588', 'latitude': '34.0498886', 'needs_recoding': False} {'longitude': '-118.25588', 'latitude': '34.0498886', 'needs_recoding': False}
1944075 780 2016-07-07T12:51:00 2016-07-07T13:04:00 3021 34.0456085 -118.23703 3054 34.0392189 -118.23649 6717 30 One Way Monthly Pass {'longitude': '-118.23703', 'latitude': '34.0456085', 'needs_recoding': False} {'longitude': '-118.23649', 'latitude': '34.0392189', 'needs_recoding': False}
1944073 600 2016-07-07T12:54:00 2016-07-07T13:04:00 3022 34.0460701 -118.23309 3014 34.0566101 -118.23721 5721 30 One Way Monthly Pass {'longitude': '-118.23309', 'latitude': '34.0460701', 'needs_recoding': False} {'longitude': '-118.23721', 'latitude': '34.0566101', 'needs_recoding': False}
1944067 600 2016-07-07T12:59:00 2016-07-07T13:09:00 3076 34.0405998 -118.25384 3005 34.0485497 -118.25905 5957 365 One Way Flex Pass {'longitude': '-118.25384', 'latitude': '34.0405998', 'needs_recoding': False} {'longitude': '-118.25905', 'latitude': '34.0485497', 'needs_recoding': False}